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Artificial intelligence system reduces false-positive
findings in the interpretation of breast ultrasound
exams
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Though consistently shown to detect mammographically occult cancers, breast ultrasound

has been noted to have high false-positive rates. In this work, we present an AI system that

achieves radiologist-level accuracy in identifying breast cancer in ultrasound images.

Developed on 288,767 exams, consisting of 5,442,907 B-mode and Color Doppler images,

the AI achieves an area under the receiver operating characteristic curve (AUROC) of 0.976

on a test set consisting of 44,755 exams. In a retrospective reader study, the AI achieves a

higher AUROC than the average of ten board-certified breast radiologists (AUROC: 0.962 AI,

0.924 ± 0.02 radiologists). With the help of the AI, radiologists decrease their false positive

rates by 37.3% and reduce requested biopsies by 27.8%, while maintaining the same level of

sensitivity. This highlights the potential of AI in improving the accuracy, consistency, and

efficiency of breast ultrasound diagnosis.
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Breast cancer is the most frequently diagnosed cancer and
the leading cause of cancer-related deaths among women
worldwide1. It is estimated that 281,550 new cases of

invasive breast cancer will be diagnosed among women in the
United States in 2021, eventually leading to approximately 43,600
deaths2. Identifying breast cancer at an early stage before
metastasis enables more effective treatments and therefore sig-
nificantly improves survival rates3,4. Mammography has long
been the most widely utilized imaging technique for screening
and early detection of breast cancer, but it is not without lim-
itations. In particular, for women with dense breast tissue, the
sensitivity of mammography drops from 85% to 48–64%5. This is
a significant drawback, as women with extremely dense breasts
have a 4-fold increased risk of developing breast cancer6. More-
over, mammography is not always accessible, especially in
limited-resources settings, where the high cost of equipment is
prohibitive and skilled technologists and radiologists are not
available7.

Given the limitations of mammography, ultrasound (US) plays
an important role in breast cancer diagnosis. It often serves as a
supplementary modality to mammography in screening settings8

and as the primary imaging modality in many diagnostic settings,
including the evaluation of palpable breast abnormalities9.
Moreover, US can help further evaluate and characterize breast
masses and is therefore frequently used for performing image
guided breast biopsies10. Breast US has several advantages com-
pared to other imaging modalities, including relatively lower cost,
lack of ionizing radiation, and the ability to evaluate images in
real time4. In particular, US is especially effective at distinguishing
solid breast masses from fluid-filled cystic lesions. In addition,
breast US is able to detect cancers obscured on mammography,
making it particularly useful in diagnosing cancers in women
with mammographically dense breast tissue11.

Despite these advantages, interpreting breast US is a challen-
ging task. Radiologists evaluate US images using different features
including lesion size, shape, margin, echogenicity, posterior
acoustic features, and orientation, which vary significantly across
patients12. Ultimately, they determine if the imaged findings are
benign, need short-term follow-up imaging, or require a biopsy
based on their suspicion of malignancy. There is considerable
intra-reader variability in these recommendations and breast US
has been criticized for increasing the number of false-positive
findings13,14. Compared to mammography alone, the addition of
US in breast cancer screening leads to an additional 5–15% of
patients being recalled for further imaging and an additional
4–8% of patients undergoing biopsy15–17. However, only 7–8% of
biopsies prompted by screening US are found to identify
cancers15,17.

Computer-aided diagnosis (CAD) systems have been proposed
to assist radiologists in the interpretation of breast US exams over
a decade ago18. Early CAD systems often relied on handcrafted
visual features that are difficult to generalize across US images
that were acquired using different protocols and US units19–24.
Recent advances in deep learning have facilitated the develop-
ment of AI systems for the automated diagnosis of breast cancer
from US images25–27. However, the majority of these efforts rely
on image-level or pixel-level labels, which require experts to
manually mark images containing visible lesions within each
exam or annotate lesions in each image, respectively28–33. As a
result, existing studies have been based on small datasets con-
sisting of several hundreds or thousands of US images. Deep
learning models trained on those datasets might not sufficiently
learn the diverse characteristics of US images observed in clinical
practice. This is especially important for US imaging as lesion
appearance can vary substantially depending on the imaging
technique and the manufacturer of the US unit system. Moreover,

prior research has primarily focused on differentiating between
benign and malignant breast lesions, hence evaluating AI systems
only on the images which contain either benign or malignant
lesions34–36. In contrast, the majority of breast cancer screening
exams are negative (no lesions are present)7,11. In addition, most
AI systems in previous studies do not interpret the model’s
predictions, resulting with "black-box” models28–36. So far, there
has been little work on interpretable AI systems for breast US.

In this work, we present an AI system (Fig. 1) to identify
malignant lesions in breast US images with the primary goal of
reducing the frequency of false positive findings. In addition to
classifying the images, the AI system also localizes the lesions in a
weakly supervised manner37–39. That is, our AI system is able to
explain its predictions by indicating locations of malignant lesions
even though it is trained with binary breast-level cancer labels
only (see Methods section ‘Breast-level cancer labels’), which were
automatically extracted from pathology reports. The explain-
ability of our system enables clinicians to develop trust and better
understand its strengths and limitations.

The proposed system provides several advances relative to
previous work. First, to the best of our knowledge, the dataset
used to train and evaluate this AI system is larger than any prior
dataset used for this application29,40. Second, to understand the
potential value of this AI system in clinical practice, we conducted
a retrospective reader study to compare its diagnostic accuracy
with ten board-certified breast radiologists. The AI system
achieved a higher area under the receiver operating characteristic
curve (AUROC) and area under the precision-recall curve
(AUPRC) than the ten radiologists on average. Moreover, we
showed that the hybrid model, which aggregates the predictions
of the AI system and radiologists, improved radiologists’ speci-
ficity and decreased biopsy rate while maintaining the same level
of sensitivity. Of note, the term “prediction” refers to the diag-
nosis produced by AI/radiologists in this retrospective study as it
is often used in the machine learning literature. It does not imply
the study being prospective. In addition, we showed that the
performance of the AI system remained robust across patients
from different age groups and mammographic breast densities.
Accuracy of our system also remained high when tested on an
external data set40.

Results
Datasets. The AI system was developed and evaluated using the
NYU Breast Ultrasound Dataset41 consisting of 5,442,907 images
within 288,767 breast US exams (including both screening and
diagnostic exams) collected from 143,203 patients examined
between 2012 and 2019 at NYU Langone Health in New York,
USA. The NYU Langone hospital system spans multiple sites
across New York City and Long Island, allowing the inclusion of a
diverse patient population. The dataset included 28,914 exams
associated with a pathology report, and among those, the biopsy
or surgery yielded benign and malignant results for 26,843 and
5593 breasts, respectively. Patients in the dataset were randomly
divided into a training set (60%) that was used for model training,
a validation set (10%) that was used for hyperparameter tuning,
and an internal test set (30%) that was used for model evaluation.
Each patient was included in only one of the three sets. We used a
subset of the internal test set for the reader study. The statistics of
the overall dataset, the internal test set, and the reader study set
are summarized in Table 1.

Each breast within an exam was assigned a label indicating the
presence of cancer using pathology results. The pathology
examinations were conducted on tissues obtained during a
biopsy or breast surgery. As shown in Fig. 1b, all cancer-positive
exams were accompanied by at least one pathology report
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indicating malignancy collected either 30 days prior or 120 days
after the US examination. This time frame was chosen to
maximize the inclusion of both lesions found at primary
screening US and lesions found during targeted US after an
initial imaging workup with a different modality. We filtered the
internal test set to ensure that cancers were visible on positive
exams and that negative exams had either cancer-negative biopsy
or at least one negative follow-up US exam (see Methods section
‘Additional filtering of the test set’). Studies with neither a
pathology report nor any negative follow-up were included in

the training and validation set but excluded from the internal
test set.

To assess the ability of the AI system to generalize across
patient populations and image acquisition protocols, we further
evaluated it on the public Breast Ultrasound Images (BUSI)
dataset collected at the Hospital for Early Detection and
Treatment of Women’s Cancer in Cairo, Egypt40. This external
test set consisted of 780 images, of which 437 were benign, 210
were malignant, and 133 were negative (no lesion present). These
images were collected from 600 patients. Of note, the BUSI
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Fig. 1 Overview of the system’s pipeline. a US images were pre-processed to extract the breast laterality (i.e., left or right breast) and to include only the
part of the image which shows the breast (cropping out the image periphery which typically contains textual metadeta about the patient and US acquisition
technique). b For each breast, we assigned a cancer label using the recorded pathology reports for the respective patient within−30 and 120 days from the
time of the US examination. We applied additional filtering on the internal test set to ensure that cancers in positive exams are visible in the US images and
negative exams have at least one cancer-negative follow-up (see Methods section `Additional filtering of the test'). c The AI system processes all US
images acquired from one breast to compute probabilistic predictions for the presence of malignant lesions. The AI system also generates saliency maps
that indicate the informative regions in each image. d We evaluated the system on an internal test set (AUROC: 0.976, 95% CI: 0.972, 0.980, n= 79,156
breasts) and an external test set (AUROC: 0.927, 95% CI: 0.907, 0.959, n= 780 images). e In a reader study consisting of 663 exams (n= 1024 breasts),
we showed that the AI system can improve the specificity and positive predictive value (PPV) for 10 attending radiologists while maintaining the same level
of sensitivity and negative predictive value (NPV).
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dataset was acquired using different US machines and was
collected from patients with contrasting demographic back-
grounds compared to the NYU dataset. Each image in the BUSI
dataset was associated with a label indicating the presence of any
malignant lesions.

AI system performance. On the internal test set of 44,755 US
exams (25,003 patients, 79,156 breasts), the AI system achieved
an AUROC of 0.976 (95% CI: 0.972, 0.980) in identifying breasts
with malignant lesions. Additionally, we stratified patients by age,
mammographic breast density, US machine manufacturer, and
evaluated AI model performance across these sub-populations
(Table 2). The AI system maintained high diagnostic accuracy
among all age groups (AUROC: 0.969–0.981), mammographic
breast densities (AUROC: 0.964–0.979), and US device manu-
facturers (AUROC: 0.974–0.990). We also explored the impact of
training dataset size on the performance of AI system. We
observed that more training data led to a better AUROC (Sup-
plementary Table 1). In addition, we evaluated the AI system on
the external test set (BUSI dataset)40. Even though the AI system
was not trained on any images of the external test set, it main-
tained a high level of diagnostic accuracy (0.927 AUROC, 95% CI:
0.907, 0.959).

Reader study. To compare the performance of the AI system with
that of breast radiologists, we conducted two reader studies: one
on the internal test set and the other on the external BUSI dataset.
Conclusions drawn from the results for both datasets were

consistent. Here we present the results for the internal test set.
The results for the external test set are in the Supplementary
Information.

From the internal test set, we constructed a reader study subset
by selecting 663 exams (644 patients, 1024 breasts). Among the
exams selected for this study, 73 breasts had pathology-proven
cancer, 535 breasts had a biopsy yielding exclusively benign
findings, and 416 breasts were not biopsied but were evaluated by
radiologists as likely benign and had a follow-up benign
evaluation at 1–2 years. Readers were informed that the study
dataset was enriched with cancers but were not informed of the
enrichment level.

Ten board-certified breast radiologists rated each breast
according to the Breast Imaging Reporting and Data System
(BI-RADS)12. Radiologists’ experience is described in Supple-
mentary Table 2. Readers were provided with contextual
information typically available in the clinical setting, including
the patient’s age, burnt-in annotations showing measurements of
suspicious findings, and notes from the technologist, such as
specifying any region of palpable concern or pain. In contrast, the
AI system was not provided any contextual information.

For each reader, we computed a receiver operating character-
istic (ROC) curve and a precision-recall curve by comparing their
BI-RADS scores to the ground-truth outcomes (see Methods
section ‘Statistical analysis’). The ten radiologists achieved an
average AUROC of 0.924 (SD: 0.020, 95% CI: 0.905, 0.944) and
an average AUPRC of 0.565 (SD: 0.072, 95% CI: 0.465, 0.625)
(Supplementary Figure 1). Compared to the average radiologist in
this study, the AI system achieved a higher AUROC of 0.962

Table 1 Statistics of the overall NYU Breast Ultrasound Dataset, internal test set, and reader study set. This dataset was
collected from NYU Langone Health over an eight-year period. Exam-level BI-RADS were issued by radiologists based on
patients’ breast US exams. Breast densities were determined using existing screening and diagnostic mammography reports.
Patients who were not matched with any mammograms were assigned "unknown” for breast density. Abbreviations: N, number;
SD, standard deviation.

Characteristic, unit Overall Internal test set Reader study

Patients, N 143,203 25,003 644
Age, mean years (SD) 53.7 (13.7) 55.5 (12.7) 52.8 (14.0)
< 40 yrs old, N (%) 18,218 (12.7) 1857 (7.4) 90 (14.0)
40− 49 years old, N (%) 33,955 (23.7) 5811 (23.2) 175 (27.2)
50− 59 years old, N (%) 34,942 (24.4) 6567 (26.3) 146 (22.7)
60− 69 years old, N (%) 26,671 (18.6) 5198 (20.8) 104 (16.1)
≥70 years old, N (%) 17,703 (12.4) 3359 (13.4) 81 (12.6)
Exams, N 288,767 44,755 663
Images, N 5,442,907 858,636 13,582
Average no. of images per exam, N 18 19 20
Exams associated with biopsy, N (%) 28,914 (10.0) 8337 (18.6) 587 (88.5)
Breasts, N 510,271 79,156 1024
Breasts with benign findings, N 26,843 7879 567
Breasts with malignant findings, N 5593 1324 73
Exam-level BI-RADS
BI-RADS 0, N (%) 14,078 (4.9) 1092 (2.4) 80 (12.1)
BI-RADS 1, N (%) 86,347 (29.9) 12,374 (27.6) 56 (8.4)
BI-RADS 2, N (%) 136,322 (47.2) 21,675 (48.4) 80 (12.1)
BI-RADS 3, N (%) 27,711 (9.6) 3586 (8.0) 25 (3.8)
BI-RADS 4, N (%) 22,133 (7.7) 5578 (12.5) 391 (59.0)
BI-RADS 5, N (%) 1348 (0.5) 338 (0.8) 22 (3.3)
BI-RADS 6, N (%) 518 (0.2) 69 (0.2) 3 (0.5)
Unknown BI-RADS, N (%) 310 (0.1) 43 (0.1) 6 (0.9)
Exam-level mammographic density
A (breasts are almost entirely fatty), N (%) 5384 (1.9) 695 (1.6) 13 (2.0)
B (scattered areas of fibroglandular density), N (%) 69,948 (24.2) 11,048 (24.7) 143 (21.6)
C (breasts are heterogeneously dense), N (%) 165,855 (57.4) 26,509 (59.2) 376 (56.7)
D (the breasts are extremely dense), N (%) 31,829 (11.0) 5189 (11.6) 76 (11.5)
Unknown density, N (%) 15,751 (5.5) 1314 (2.9) 55 (8.3)
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(95% CI: 0.943, 0.979) with an AUROC improvement of 0.038
(95% CI: 0.028, 0.052, P < 0.001) and a higher AUPRC of 0.752
(95% CI: 0.675, 0.849) with an AUPRC improvement of 0.187
(95% CI: 0.140, 0.256, P < 0.001) (Fig. 2). In addition, we also
compared the specificity and sensitivity achieved by the AI system
and radiologists. We assigned a positive prediction to any breast a
radiologist gave a BI-RADS score of ≥4, and a negative prediction
to any breast that was given a BI-RADS score of 1–3. A BI-RADS
score of ≥4 is an assessment that indicates a radiologist thinks an
exam is suspicious for malignancy. This was selected as the
threshold for positive predictions since this is the score above
which a patient will typically undergo an invasive procedure

(biopsy or surgical excision) to definitively determine whether
they have cancer12. With this methodology, the ten radiologists
achieved an average specificity of 80.7% (SD: 4.7%, 95% CI:
78.9%, 82.6%) and an average sensitivity of 90.1% (SD: 4.3%, 95%
CI: 86.4%, 93.8%). At the average radiologist’s specificity, the AI
system achieved a sensitivity of 94.5% (95% CI: 89.4%, 100.0%)
and an improvement in sensitivity of 4.4% (95% CI: −0.3%, 7.5%,
P= 0.0278). At the average radiologist’s sensitivity, the AI system
achieved a higher specificity of 85.6% (95% CI: 83.9%, 88.0%)
with an absolute increase in specificity of 4.9% (95% CI: 3.0%,
7.1%; P < 0.001). At the average radiologist’s sensitivity, the AI
system recommended tissue biopsies on 19.8% (95% CI: 17.9%,

Table 2 AI performance on the internal test set across different sub-populations. We reported the AUROC of the AI system with
95% confidence intervals on the internal test set. The biopsied population only includes exams where at least one biopsy was
recommended. We stratified exams based on patient age, mammographic breast density, and the manufacturer of the US
devices. Mammographic breast density was categorized based on the BI-RADS standards69.

Population AUROC (95% CI) No. of breasts No. of cancers

Overall population 0.976 (0.972, 0.980) 79,078 1248
Biopsied population 0.940 (0.934, 0.947) 12,973 1248
Age
< 40 yrs old 0.969 (0.955, 0.982) 5176 72
40− 49 yrs old 0.970 (0.955, 0.986) 19,677 160
50− 59 yrs old 0.981 (0.975, 0.986) 24,142 292
60− 69 yrs old 0.980 (0.973, 0.985) 19,039 326
≥70 yrs old 0.969 (0.958, 0.981) 11,044 398
Breast density
Entirely fatty 0.964 (0.942, 0.983) 1157 54
Scattered fibroglandular densities 0.975 (0.961, 0.982) 19,199 441
Heterogeneously dense 0.979 (0.974, 0.981) 47,255 610
Extremely dense 0.964 (0.932, 0.973) 9398 90
Unkown 0.970 (0.955, 0.983) 2069 53
Manufacturer
GE 0.984 (0.968, 0.993) 5708 47
Medison 0.990 (0.974, 0.996) 2673 13
Philips 0.977 (0.970, 0.982) 28,943 412
Siemens 0.974 (0.968, 0.980) 37,572 699
Toshiba 0.986 (0.978, 0.992) 4180 77
Other — 2 0

Fig. 2 Reader study results. The performance of the AI system on the reader study population (n= 1024 breasts) using ROC curve (a) and precision-recall
curve (b). The AI achieved 0.962 (95% CI: 0.943, 0.979) AUROC and 0.752 (95% CI: 0.675, 0.849) AUPRC. Each data point represents a single reader
and the triangles correspond to the average reader performance. The inset shows a magnification of the gray shaded region.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26023-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5645 | https://doi.org/10.1038/s41467-021-26023-2 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


22.1%) of breasts and 32.5% (95% CI: 26.9%, 39.2%) of these
biopsies were for breasts ultimately found to have cancer.
Compared to the average reader’s biopsy rate of 24.3% (SD:
4.5%, 95% CI: 22.0%, 26.5%) and average PPV of 27.1% (SD:
4.1%, 95% CI: 22.9%, 33.1%), the AI system achieved an absolute
reduction in biopsy rate of 4.5% (95% CI: 2.9%, 6.5%, P < 0.001)
which corresponds to 18.6% of all biopsies recommended by the
average radiologist and achieved an absolute improvement in
PPV of 5.4% (95% CI: 2.4%, 8.9%, P < 0.001). The performance of
the AI system and readers is summarized in Supplementary
Table 3.

Subgroup analysis on the biopsied population. We conducted
additional analyses on two clinically relevant subgroups in the
reader study to understand the relative strengths of the AI system
and radiologists. The first analysis examined diagnostic accuracy
exclusively amongst breasts with lesions that had undergone
biopsy or surgical evaluation (73 breasts with pathology-
confirmed malignant lesions and 535 breasts with exclusively
pathology-confirmed benign lesions). Breasts that yielded normal
findings were not included. As expected, compared to the overall
reader study population, AUROC (mean: 0.896, SD: 0.024, 95%
CI: 0.874, 0.929) and specificity (mean: 69.8%, SD: 6.9%, 95% CI:
67.7%, 73.6%) of radiologists declined in this sub-population.
Additionally, the average biopsy rate of radiologists increased to
37.4% (SD: 6.4%, 95% CI: 33.1%, 39.8%). On this subgroup, the
AI system achieved an AUROC of 0.941 (95% CI: 0.922, 0.968).
Compared to radiologists, the AI system demonstrated an abso-
lute improvement of 8.5% (95% CI: 5.3%, 11.1%; P < 0.001) in
specificity, an absolute reduction of 7.5% (95% CI: 4.4%, 9.6%,
P < 0.001) in biopsy rate, and an absolute improvement in PPV of
6.7% (95% CI: 3.0%, 9.8%, P < 0.001), while matching the average
radiologist’s sensitivity. The performance of each reader is shown
in Supplementary Table 4.

Next, we evaluated the accuracy of readers and the AI system
exclusively amongst breasts with pathology-confirmed cancers
(97 malignant lesions across 73 breasts). As shown in
Supplementary Table 5, we stratified malignant lesions by cancer
subtype, histologic grade, and biomarker profile. This was done to
further investigate the AI system’s ability to discriminate between
benign and malignant lesions. Certain types of breast cancers
(such as high grade, triple biomarker negative cancers) may
closely resemble benign masses (more likely to have oval/round
shape and circumscribed margins, less likely to have posterior
attenuation compared to other cancers) and are considered
particularly difficult to characterize42. Although the sample sizes
in some subgroups are limited, this analysis demonstrated that
the sensitivity of the AI system was similar to that of the readers
across all stratification categories. There were no significant
differences in sub-populations of patients where the AI system
had inferior performance.

Qualitative analysis of saliency maps. In an attempt to under-
stand the AI system’s potential utility as a decision support tool,
we qualitatively assessed six studies using the AI’s saliency maps.
These saliency maps indicated where the system identified
potentially benign and malignant lesions, and represent data that
could be made available to radiologists (in addition to breast level
predictions of malignancy) if the AI system were integrated into
clinical practice. Figure 3a, b shows two 1.5cm irregularly shaped
hypoechoic masses with indistinct margins, that ultimately
underwent biopsy and were found to be invasive ductal carci-
noma. All readers as well as the AI system correctly identified
these lesions as being suspicious for malignancy. Figure 3c dis-
plays a small 7mm complicated cystic/solid nodule with a

microlobulated contour, which 7 out of 10 readers as well as the
AI system thought appeared benign. However, this lesion ulti-
mately underwent biopsy and was found to be invasive ductal
carcinoma. Figure 3d displays a 7mm superficial and palpable
hypoechoic mass with surrounding echogenicity, that underwent
biopsy and was found to be benign fat necrosis. However, the AI
system as well as 9 out of 10 readers incorrectly thought this
lesion was suspicious for malignancy, and recommended it
undergo biopsy. Lastly, Fig. 3e shows a small 7mm ill-defined area
and Fig. 3f displays a 9mm mildly heterogenous lobulated solid
nodule. All 10 radiologists thought these two lesions appeared
suspicious and recommended they undergo biopsy. In contrast,
the AI system correctly classified the exams as benign, and the
lesions were ultimately found to be benign fibrofatty tissue
(Fig. 3e) and a fibroadenoma (Fig. 3f). Although we were unable to
determine clear patterns among these US exams, the presence of
cases where the AI system correctly contradicted the majority of
readers and produced appropriate localization information
underscores the potential complementary role the AI system
might play in helping human readers more frequently reach
accurate diagnoses. We provided additional visualization of sal-
iency maps in Supplementary Fig. 2.

Potential clinical applications. To evaluate the potential of our
AI system to augment radiologists’ diagnosis, we created hybrid
models of the AI system and the readers. The predictions of each
hybrid model were computed as an equally weighted average
between the AI system and each reader (see Methods section
‘Hybrid model’). This analysis revealed that the performance of
all readers was improved by incorporating the predictions of the
AI system (Fig. 4, Supplementary Table 6). On average, the
hybrid models improved radiologists’ AUROC by 0.037 (SD:
0.013, 95% CI: 0.011, 0.070, P < 0.001) and improved their
AUPRC by 0.219 (SD: 0.060, 95% CI: 0.089, 0.372, P < 0.001). At
the radiologists’ sensitivity levels, the hybrid models increased
their average specificity from 80.7% to 88.0% (average increase
7.3%, SD: 3.8%, 95% CI: 2.7%, 18.5%, P < 0.001), increased their
PPV from 27.1% to 38.0% (average increase 10.8%, SD: 5.3%, 95%
CI: 3.7%, 25.0%, P < 0.001), and decreased their average biopsy
rate from 24.3% to 17.6% (average decrease 6.8%, SD: 3.5%, 95%
CI: 2.3%, 17.1%, P < 0.001). The reduction in biopsies achieved by
the hybrid model represented 27.8% of all biopsies recommended
by radiologists. In Supplementary Table 7, we reported the
numbers of false positive biopsies (FP) and false negative diag-
noses (FN) of all ten radiologists and hybrid models. We divided
FP and FN according to the BI-RADS scores given by each
radiologist. On average, the radiologists made 182.7 (SD: 43.8,
95% CI: 178.8, 185.9) FPs and 53.3% (SD: 18.4%, 95% CI: 52.4%,
54.3%) of them were rated as BI-RADS 4A by the readers. The
hybrid models decreased average radiologists’ FPs by 37.3% (SD:
12.9%, 95% CI: 35.5%, 39.3%, P<0.001) while yielding the same
number or fewer FN than the radiologists. In particular, 68.2%
(SD: 19.5%, 95% CI: 65.3%, 70.1%) of radiologists’ FPs in BI-
RADS 4A category were obviated.

In addition, the AI system could also be used to assist
radiologists to triage US exams (Supplementary Table 8). To
evaluate the potential of the AI system in identifying cancer-
negative cases with high confidence, we selected a very low
decision threshold to triage women into a no-radiologist work
stream. On the reader study subset, using this triage paradigm,
the AI system achieved an NPV of 99.86% while retaining a
specificity of 77.7%. This result suggests that it may be feasible to
dismiss 77.7% of normal/benign cases and skip radiologist review
if we accept missing one cancer in every 740 negative predictions,
which is less than 1/6 of the false negative rate observed among
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radiologists in the reader study (one missed cancer for every 109
negative evaluations). To evaluate the potential of the AI system
in triaging patients into an enhanced assessment work stream, we
used a very high decision threshold. In this enhanced assessment
work stream, the AI system achieved a PPV of 84.4% while
retaining a sensitivity of 52.1%. These results suggest that it may
be feasible to rapidly prioritize more than half of cancer cases,
with approximately five out of six biopsies leading to a diagnosis
of cancer. For comparison, only 27.1% biopsies that the
radiologists recommended were diagnosed with cancer. While
we demonstrated the potential of AI in automatically triaging
breast US exams, confirmation of these performance estimates
would require extensive validation in a clinical setting.

Discussion
In this work, we present a radiologist-level AI system that is
capable of automatically identifying malignant lesions in breast

US images. Trained and evaluated on a large dataset collected
from 20 imaging sites affiliated with a large medical center, the AI
system maintained a high level of diagnostic accuracy across a
diverse range of patients whose images were acquired using a
variety of US units. By validating its performance on an external
dataset, we produced preliminary results substantiating its ability
to generalize across a patient cohort with different demographic
composition and image acquisition protocols.

Our study has several strengths. First, in the reader study
subset, we found that the AI system performed comparably to
board-certified breast radiologists. The ten radiologists achieved
an average sensitivity of 90.1% (SD: 4.3%, 95% CI: 86.4%, 93.8%)
and an average specificity of 80.7% (SD: 4.7%, 95% CI: 78.9%,
82.6%). The sensitivity of radiologists in our study is consistent
with the results reported in other breast US reader studies10,43, as
well as the sensitivity of breast radiologists observed in clinical
practice, despite the fact that radiologists in our study did not
have access to the patient’s medical record or prior breast

Fig. 3 Qualitative analysis of saliency maps. In each of the six cases (a–f) from the reader study, we visualized the sagittal and transverse views of the
lesion (left) and the AI’s saliency maps indicating the predicted locations of benign (middle) and malignant (right) findings (see Methods section `Deep
neural network architecture'). Exams a–c display lesions that were ultimately biopsied and found to be malignant. All readers and the AI system correctly
classified exams a–b as suspicious for malignancy. However, the majority of readers (7/10) and the AI system incorrectly classified case c as benign. Cases
d–f display lesions that were biopsied and found to be benign. The majority of readers incorrectly classified exams d (9/10), e (10/10), and f (10/10) as
suspicious for malignancy and recommended the lesions undergo biopsy. In contrast, the AI system classified exam d as malignant, but correctly identified
exams e–f as being benign.
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imaging15,44. Compared to radiologists in our reader study, the
AI system was able to detect cancers with the same sensitivity,
while obtaining a higher specificity (85.6%, 95% CI: 83.9%,
88.0%), a higher PPV (32.5%, 95% CI: 26.9%, 39.2%), and a lower
biopsy rate (19.8%, 95% CI: 17.9%, 22.1%). Moreover, the AI
system achieved a higher AUROC (0.962, 95% CI: 0.943, 0.979)
and AUPRC (0.752, 95% CI: 0.675, 0.849) than all ten radi-
ologists. This trend was confirmed in our subgroup analysis
which showed that the system could accurately interpret US
exams that are deemed difficult by radiologists.

Another strength of this study is that we explored the benefits
of collaboration between radiologists and AI. We proposed and
evaluated a hybrid diagnostic model that combined the predic-
tions from radiologists and the AI system. The results from our
reader study suggest that such collaboration improves the diag-
nostic accuracy and reduces false positive biopsies for all ten
radiologists (Supplementary Table 6). In fact, breast US has come
under criticism for having a high false positive rate13,14. As
reported by multiple clinical studies, only 7-8% of breast biopsies
performed under US guidance are found to yield cancers15,17.

Fig. 4 Performance of readers, AI, and hybrid models.We reported the observed values (measure of center) and 95% confidence intervals (error bars) of
AUROC (a), AUPRC (b), specificity (c), biopsy rate (d), and PPV (e) of ten radiologists (R1-R10), AI, and the hybrid models on the reader study set (n =
1024 breasts) The predictions of each hybrid model are weighted averages of each reader’s BI-RADS scores and the AI’s probablistic predictions (see
Methods section `Hybrid model'). We dichotomized each hybrid model’s probabilistic predictions to match the sensitivity of its respective reader. We
dichotomized the AI’s predictions to match the average radiologists' sensitivity. The collaboration between AI and readers improves readers' AUROC,
AUPRC, specificity, and PPV, while reducing biopsy rate. We estimated the 95% confidence intervals by 1000 iterations of the bootstrap method.
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Indeed, for the ten radiologists in our cancer-enriched reader
study subset, on average 19.3% (SD: 4.7%, 95% CI: 17.7%, 20.6%)
of cancer-negative exams were falsely diagnosed as positive and
only 27.1% (SD: 4.1%, 95% CI: 22.9%, 33.1%) of the exams that
they recommended to undergo biopsy actually had cancer. In this
study, we showed that the hybrid models reduced the average
radiologist’s false positive rate to 12.0% (SD: 3.9%, 95% CI: 7.6%,
21.0%), representing a 37.3% (SD: 12.9%, 95% CI: 35.5%, 39.3%)
relative reduction. The hybrid models also increased the average
radiologist’s PPV to 38.0% (SD: 6.0%, 95% CI: 24.1%, 50.0%).
These results indicate that our AI system has the potential to aid
radiologists in their interpretation of breast US exams to reduce
the number of false positive interpretations and benign biopsies
performed.

Beyond improving radiologists’ performance, we also explored
how AI systems could be utilized to assist radiologists to triage US
exams. We showed that high-confidence operating points pro-
vided by the AI system can be used to automatically dismiss the
majority of low-risk benign exams and escalate high-risk cases to
an enhanced assessment stream. Prospective clinical studies will
be required to understand the full extent to which this technology
can benefit US reading.

Finally, we have made technical contributions to the metho-
dology of deep learning for medical image analysis. Prior work on
AI systems for interpreting breast US exams, and other similar
applications, rely on manually collected image-level or pixel-level
labels28–33. In contrast, our AI system was trained using breast-
level labels which were automatically extracted from pathology
reports. This is an important difference, as developing a reliable
AI system for clinical use requires training and validation on
large-scale datasets to ensure the network will function well
across the broad spectrum of cases encountered in clinical prac-
tice. At such a scale, it is impractical to collect labels manually.
We address this issue by adopting the weakly supervised learning
paradigm to train models at scale without the need for image-
level or pixel-level labels. This paradigm enables the model to
generate interpretable saliency maps that highlight informative
regions in each image. Admittedly, the literature has not yet
reached a consensus on the definition of what exactly interpret-
ability for neural networks is. Nevertheless, with the saliency
maps, researchers can perform qualitative error analysis and
understand the strength and limitations of the AI system. Fur-
thermore, a system trained with such a large dataset could help
discover novel data-driven imaging biomarkers, leading to a
better understanding of breast cancer.

Despite the contributions of our study in advancing breast
cancer diagnosis, it has some limitations. We focused on the
evaluation of an AI system that detects breast cancer only using
US imaging. In clinical practice, US imaging is often used as a
complementary modality to mammography. One promising
research direction is to utilize multimodal learning45,46 to com-
bine information from other imaging modalities. Moreover, the
diagnosis produced by our AI system is based only on a single US
exam, while breast radiologists often refer to patients’ prior
imaging to evaluate the morphological changes of suspicious
findings over time. Future research could focus on augmenting AI
systems to extract relevant information from past US exams. In
addition, we did not provide an evaluation on patient cohorts
stratified by risk factors such as family history of breast cancer
and BRCA gene test results.

Another limitation of this work is the design of reader study.
To provide a fair comparison with the AI system, readers in our
study were only provided with US images, patients’ ages, and
notes from the operating technician. In clinical practice, breast
radiologists also have access to other information such as
patients’ prior breast imaging and their electronic medical

records. Moreover, in the breast cancer screening setting, a
screening US examination is typically accompanied by a screen-
ing mammogram. Even if prior US exams are not available,
radiologists can typically refer to the mammogram for additional
information, which can also influence the way that an US exam is
interpreted. In addition, the qualitative analysis presented in this
study was conducted over a limited set of exams. A systematic
study on the differences between the AI system and the percep-
tion of radiologists in sonography interpretation is required to
understand the limitations of such systems.

Finally, compared to the NYU Breast Ultrasound Dataset, the
external test set is limited in size. All images in the external test
set were acquired using a single US system40. Moreover, each
lesion/finding in the external test set is only associated with a
single image. On the contrary, in clinical practice, the technicians
often acquire multiple images from different views for findings
that are suspicious of malignancy. This difference in image
acquisition protocol likely lead to the gap in AI’s performance
between the internal and external test set.

Despite these limitations, we believe this study is a meaningful
contribution to the emerging field of AI-based decision support
systems for interpreting breast US exams. On a clinically realistic
population, our AI system achieved a higher diagnostic accuracy
(AUROC: 0.976, 95% CI: 0.972, 0.980) than prior AI systems for
breast US lesion classification (AUROC: 0.82-0.96)32,34,47–52,
though we acknowledge these systems can be compared only
approximately as they were evaluated on different datasets. Key
features that contributed to our AI system’s high level perfor-
mance were the large dataset used in training, along with utili-
zation of the weakly supervised learning paradigm that enables
the system to learn from automatically extracted labels. Fur-
thermore, as our AI system was evaluated on a large test set
( > 44,000 US exams) acquired from a diverse range of US units
and patients of diverse demographics, we are optimistic of its
ability to perform well prospectively, in the hands of radiologists.
A few recent studies have demonstrated in retrospective reader
studies that AI systems can improve the performance of radi-
ologists when they have access to the decision support tool while
reviewing US exams47,51. However, these studies utilized an AI
system that required radiologists to localize lesions by manually
drawing bounding boxes. Moreover, these studies used small
datasets and did not evaluate the AI’s performance on sub-
populations stratified by age and breast density. This makes it
hard to determine if the system would maintain performance
across the broad range of US exams that a radiologist might
encounter in different clinical settings. Regardless of these lim-
itations, these studies demonstrate that an AI system with a
relatively low AUROC of 0.86-0.88 can substantially improve the
diagnostic accuracy of radiologists. Based on these results, we are
optimistic that our AI system, which does not require radiologists
to localize lesions and achieved a higher diagnostic accuracy
(AUROC: 0.976) on a larger diverse patient population, could
enable radiologists to achieve even greater levels of performance.
As a next step, our system requires prospective validation before
it can be widely deployed in clinical practice. The potential
impact that such a system could have on women’s imaging is
immense, given the enormous volume of women who undergo
breast US exams each year.

In conclusion, we examined the potential of AI in US exam
evaluation. We demonstrated in a reader study that deep learning
models trained with a sufficiently large amount of data are able to
produce diagnosis as accurate as experienced radiologists. We
further showed that the collaboration between AI and radiologists
can significantly improve their specificity and obviate 27.8% of
requested biopsies. We believe this research could supplement
future approaches to breast cancer diagnosis. In addition,
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the general approach employed in our work, mainly the frame-
work for weakly supervised classification and localization, may
enable utilization of deep learning in similar medical image
analysis tasks.

Methods
Ethical approval. This retrospective study was approved by the NYU Langone
Health Institutional Review Board (ID#i18-00712_CR3) and is compliant with the
Health Insurance Portability and Accountability Act. Informed consent was waived
since the study presents no more than minimal risk. This study is reported fol-
lowing the TRIPOD guidelines53.

NYU breast ultrasound dataset. The dataset used in this study was collected from
NYU Langone Health system (New York, USA) across 20 imaging sites. The final
dataset contained 288,767 exams (5,442,907 images) acquired from 143,203
patients imaged between January 2012 and September 2019. Each US exam
included between 4 and 70 images with 18.8 images per exam on average (Sup-
plementary Fig. 3a). The images had an average resolution of 665 × 603 pixels in
width and height, respectively (Supplementary Fig. 3b). Both B-mode and color
Doppler images were included. For each color Doppler image, the color Doppler
map was overlaid on the B-mode US image. The AI system processed both B-mode
images and color Doppler images in the same way. A summary of the acquisition
devices is shown in Supplementary Table 9. Each exam was associated with
additional patient metadata as well as a radiology report summarizing the findings.
We extracted breast tissue density from the patients’ past mammography reports
and assigned "unknown” to patients who did not have any mammography exams.
Both screening and diagnostic US exams were included. Screening exams are
performed for women who have no symptoms or signs of breast cancer while
diagnostic US exams can be used to evaluate women who present with symptoms
such as a new lump or pain in the breast or can be used to further evaluate
abnormalities detected on a screening examination. While screening exams are
typically comprehensive and image both breasts, diagnostic US exams vary in
terms of how targeted they are, and might image both breasts, one breast, or
sometimes just a single lesion. The dataset was filtered as described in the next
section. Further details can be found in the technical report41.

Filtering of the dataset. We initially extracted a dataset of 425,506 breast US
exams consisting of 8,448,978 images collected from 212,716 unique patients. We
then applied a few levels of filtering to obtain the final dataset for training and
evaluating the neural network. This entailed the exclusion of exams with invalid
patient identifiers, exams collected before 2012, exams collected from patients
younger than 16 years of age, duplicate images, exams from non-female patients,
and invalid images based on the ImageType attribute, which consisted of non-US
images such as reports or demographic data screenshots. We further excluded
images that were collected during biopsy procedures based on the Performed-
ProcedureStepDescription, StudyDescription & Reques-
tedProcedureDescription attributes of the image metadata, in that order,
images with missing metadata information relating to the type of procedure,
images with more than 80% zero pixels, exams with multiple patient identifiers or
study dates, exams with an extreme number of images, and exams with missing
image laterality.

Patients were then randomly split among training (60%), validation (10%) and
test (30%) sets. After splitting, each patient appeared in only one of the training,
validation, and test sets. The training set consisted of 3,930,347 images within
209,162 exams collected from 101,493 patients. The validation set consisted of
653,924 images within 34,850 exams collected from 16,707 patients. The test set
consisted of 858,636 images within 44,755 exams collected from 25,003 patients.
The training set was used to optimize learnable parameters in the models. The
validation set was used to tune the hyperparameters and select the best models. The
test set was used to evaluate the performance of the models selected using the
validation set. We applied additional filtering on the test set as described in the next
section.

Additional filtering of the test set. To provide a clinically realistic evaluation of
the AI system, we additionally refined the test set using the steps summarized in
Supplementary Fig. 4. First, we ensured that each non-biopsied exam was followed
with a subsequent cancer-negative exam. Non-biopsied patients who had a negative
(BI-RADS 1) or benign (BI-RADS 2) US exams were only included in the test set if
they did not have any malignant breast pathology found within 0-15 months
following their US exam, and had follow up imaging between 6 and 24 months that
was also negative or benign (BI-RADS 1–2). Patients who did not undergo biopsy
and had probably benign US exams (BI-RADS 3) were included in the test set if
they did not have any malignant breast pathology found within 0–15 months
following their exam, and met one of two additional criteria: all of their subsequent
US exams in the 4–36 months following their initial US exam were BI-RADS 1–2,
or they had at least one follow-up US exam at 24–36 months which was evaluated
as BI-RADS 1–3.

Next, we refined exams with biopsy-proven benign findings to determine if the
pathology results were deemed by the radiologist to be concordant or discordant
with the imaging features of the breast lesion. Patients with biopsy reports that
confirmed a discordant benign finding were only included in the test set if they
received a subsequent biopsy (that was not discordant) or breast surgery within the
6 months following the initial discordant biopsy. Patients with benign discordant
biopsies that did not receive subsequent pathological evaluation were excluded.

Lastly, we ensured that exams with pathology-proven cancers contained images
of these cancers. Since breast US produces small images which do not
comprehensively capture the entire breast, a proportion of patients diagnosed with
breast cancer did not have images of the cancer in any of their US images. US
exams with a label indicating malignancy and a BI-RADS score of 1–2 were
excluded as these exams typically did not contain images of the cancer.
Additionally, patients diagnosed with breast cancer who did not have any breast
pathology obtained using US-guided biopsy were also excluded, since the majority
of patients diagnosed using MRI and stereotactic-guided biopsies had malignancies
that were sonographically occult. US exams that received a BI-RADS score of 0, 3,
and 6, as well as patients who had breast pathology obtained using multi-modal
image guidance (US plus stereotactic and/or MRI guided biopsies) had their cases
manually reviewed to confirm that breast cancer was visible on the US exam.
Patients who were given a BI-RADS score of 4-5 and had all their breast pathology
obtained using US-guided biopsy were presumed to have visible cancers and were
not manually reviewed.

Breast-level cancer labels. Among all the exams in the dataset, 28,914 exams
(approximately 10%) were associated with at least one pathology report dated
within 30 days prior or 120 days after the US examination. Pathology reports were
used to automatically detect cancer labels. In cases where there were multiple
pathology reports recorded within the considered time window, all of these reports
were evaluated. Malignant findings included primary breast cancers: invasive ductal
carcinoma, invasive lobular carcinoma, special-type invasive carcinoma (including
tubular, mucinous and cribriform carcinomas), inflammatory carcinoma, intra-
ductal papillary carcinoma, microinvasive carcinoma, ductal carcinoma in situ, as
well as non-primary breast cancers: lymphoma and phyllodes. Benign findings
included cyst, fibroadenoma, scar, sclerosing adenosis, lobular carcinoma in situ,
columnar cell changes, atypical lobular hyperplasia, atypical ductal hyperplasia,
papilloma, periductal mastitis and usual ductal hyperplasia. The labels were
automatically extracted from the corresponding pathology reports using a natural
language processing pipeline developed earlier41. Of note, patients with multiple
pathology reports could be assigned both malignant and benign labels if their exam
contained both types of lesions.

Breast ultrasound images dataset. This external dataset was collected in 2018
from Baheya Hospital for Early Detection and Treatment of Women’s Cancer
(Cairo, Egypt) with the LOGIQ E9 ultrasound system. It included 780 breast US
images, with an average resolution of 500 × 500 pixels, acquired from 600 female
patients whose ages ranged between 25 and 75 years old. Among these 780 images,
133 were normal images without cancerous masses, 437 were images containing
malignant masses and 210 were images with benign masses. We refer the reader to
the original paper for more information about this public dataset40.

Deep neural network architecture. We present a deep learning model (DLM)
whose architecture is shown in Supplementary Fig. 5. To explain the mechanics of
this model, we need to introduce some notations. Let x 2 RH;W;3 denote an RGB
US image with a resolution of H ×W pixels and let X= {x1, x2, . . . , xK} denote an
image set that contains all images acquired from the patient during an US exam
from one breast. This DLM is trained to process the image set X, which may vary
in number of the images it contains (Supplementary Fig. 3), and generate two
probability estimates ŷb , ŷm 2 ½0; 1� that indicate the predicted probability of the
presence of benign and malignant lesions in the patient’s breast, respectively. The
DLM is designed to resemble the diagnostic procedure performed by radiologists.
First, it generates saliency maps and probability estimates for each image xk in the
image set. This step is similar to a radiologist roughly scanning through each US
image and looking for abnormal findings. Then it computes a set of attentions
scores which indicate the importance of each image to the cancer diagnosis task.
This procedure can be seen as an analog to a radiologist concentrating on images
that contain suspicious lesions. Finally, it forms a breast-level cancer diagnosis by
combining information collected from all images. This is analogous to modeling a
radiologist comprehensively considering signals in all images to render a full
diagnosis. Below we describe each step in detail.

1. Saliency maps. The DLM first utilizes a convolutional neural network54fg
(parameterized as ResNet-1855) to extract a representation of each image xk,
in an image set X, denoted by hk 2 Rh;w;C . The height, the width, and the
number of channels are denoted by h, w, and C, respectively. Inspired by
Zhou et al.38, we then apply a convolutional layer with 1 × 1 convolutional
filters followed by sigmoid non-linearity to transform hk into two saliency
maps Ab

k 2 Rh;w and Am
k 2 Rh;w . These saliency maps highlight approx-

imate locations of benign and malignant lesions in each image. Each
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element Ab
k½i; j�;Am

k ½i; j� 2 ½0; 1� denotes the contribution of spatial location
(i, j) towards predicting the presence of benign/malignant lesions. The
resolutions of the saliency maps (h,w) depends on the implementation of fg.
The sizes (h,w) are usually smaller than the resolution of the input image
(H,W). In this work, we set h= w= 8, C= 512, and H=W= 256.

2. Attention scores. The images in the image set X might significantly differ in
how relevant each of them is to the classification task. To address this issue,
we utilize the Gated Attention Mechanism56, allowing the model to select
which information to incorporate from all images. Specifically, we first apply
global max pooling to transform the representation hk computed for the
image xk into a vector vk 2 RC . Two attention scores αbk and αmk 2 ½0; 1� that
indicate the importance of each image xk to the estimation of the probability
of the presence of benign and malignant findings in the breast are computed
as

αk ¼
expfW⊺ðtanhðVv⊺k Þ � sigmðUv⊺k ÞÞg

∑K
j¼1expfW⊺ðtanhðVv⊺j Þ � sigmðUv⊺j ÞÞg

; ð1Þ

where αk ¼ αbk
αmk

� �
denotes the concatenation of attention scores for both

benign and malignant findings,⊙ denotes an element-wise multiplication,
and W 2 RL;2, V 2 RL ´M and U 2 RL ´M are matrices of learnable
parameters. In all experiments, we set L= 128 and M= 512.

3. Cancer diagnosis. Lastly, the DLM aggregates the information from all US
images in the image set X and generates the final diagnosis using the
attention scores and saliency maps. We first use an aggregation function
f aggðAÞ : Rh;w 7!½0; 1� to transform the saliency maps into image-level
predictions:

ŷbk ¼ f aggðAb
kÞ ŷmk ¼ f aggðAm

k Þ: ð2Þ
In our work, we parameterize fagg as the top t% pooling proposed by Shen
et al.57–59. Namely, we define the aggregation function as

f aggðAÞ ¼
1

jHþj ∑
ði;jÞ2Hþ

Ai;j; ð3Þ

where H+ denotes the set containing locations of top t% values in A, and t is

a hyperparameter. The breast-level cancer prediction ŷ ¼ ŷb

ŷm

� �
is then

defined as the average of all image-level cancer predictions weighted by the
attention scores:

ŷb ¼ ∑
K

k¼1
αbkŷ

b
k; ŷm ¼ ∑

K

k¼1
αmk ŷ

m
k : ð4Þ

Training details. In order to constrain the saliency maps to only highlight
important regions, we impose the L1 regularization on A which penalizes the DLM
for highlighting irrelevant pixels:

LregðAÞ ¼ ∑
ði;jÞ

jA½i; j�j: ð5Þ

Despite the relative complexity of our proposed framework, this DLM can be
trained end-to-end using stochastic gradient descent with the following loss
function, defined for a single training example (i.e. one breast) as

Lðy; ŷÞ ¼ ∑
c2fb;mg

BCEðyc; ŷcÞ þ β ∑
K

k¼1
LregðAc

kÞ; ð6Þ

where BCE is the binary cross-entropy and β is a hyperparameter. For all
experiments, the training loss is optimized using Adam60. Of note, labels indicating
the presence of benign lesions (yb) were also used during training to regularize the
network through multi-task learning61. On the test set, we focus on evaluating
predictions of malignancy since it is a more clinically relevant task: identification of
malignant lesions has an immediate and significant impact on patient management
(biopsy, potential surgery), whereas identification of a benign breast lesions typi-
cally does not alter management compared to patients without breast lesions12.

We optimized the hyperparameters with random search62. Specifically, we
searched for the learning rate η∈ 10[−5.5,−4] on a logarithmic scale, regularization
hyperparameter β∈ 10[−3, 0.5] on a logarithmic scale, weight decay hyperparameter
λ∈ 10[−6,−3.5] on a logarithmic scale, and the pooling threshold t∈ [0.1, 0.5] on a
linear scale. We trained 30 separate models using hyperparameters uniformly
sampled from the ranges above. Each model was trained for 50 epochs. We saved
the model weights from the training epoch that achieves the highest AUROC on
the validation set. To further improve our results, we used model ensembling63.
Specifically, we average the breast-level predictions of the top 3 models that
achieved the highest AUROC on the validation set to produce the overall
prediction of the ensemble.

During training, we adopt image augmentation including random horizontal
flipping (p= 0.5), random rotation (−45° to 45°), random translation in both
horizontal and vertical directions (up to 10% of the image size), scaling by a
random factor between 0.7 and 1.5, and random shearing (−25° to 25°). The
resulting image was then resized to 256 × 256 pixels using bilinear interpolation

and normalized. During the validation and test stages, the original image was
resized and normalized without any augmentation.

Test-time augmentation. We adopted test-time augmentation64 on the external
test set to improve model’s performance. We applied following augmentations and
computed a prediction on each augmented image: random horizontal flipping
(p= 0.5), random vertical flipping (p= 0.5), and altering the brightness and con-
trast by a factor randomly chosen from [0.9, 1.1]. This augmentation pipeline was
selected using AI’s performance on the validation subset of the NYU Breast
Ultrasound Dataset. We repeated this procedure 20 times on each image. The final
prediction for each image was computed by averaging the predictions on all
augmented images.

Implementation details. Image preprocessing was performed using Python (3.7)
with the following packages: OpenCV (3.4), pandas (0.24.1), Numpy (1.15.4), PIL
(5.3.0), and Pydicom (2.2.0). Deep learning model was implemented using PyTorch
(1.1.0) and Torchvision (0.2.2). Evaluation metrics were computed using Sklearn
(0.19.1).

Reader study. We performed a reader study to compare the performance of the
proposed DLM with breast radiologists. This study included ten board-certified
breast radiologists with an average of 15 years of clinical experience (Supple-
mentary Table 2). Their experience ranged from 3 to 40 years. Nine of the ten
radiologists were fellowship-trained in breast imaging. The one radiologist who did
not receive formal fellowship training (R10) worked as a sub-specialized breast
radiologist and had over 30 years of breast imaging experience. The readers were
provided with US images including metadata (breast laterality, position of the
probe, notes from the sonographer) and the age of the patient. For each breast in all
exams, the readers were then asked to provide a diagnostic BI-RADS score using
the values 1, 2, 3, 4A, 4B, 4C or 5. A score of 0 was not permitted.

Hybrid model. To explore the potential benefit that the AI system might be able to
provide, we created a hybrid model for each radiologist, whose predictions were
created by averaging the predictions of the respective radiologist and the AI model:
ŷhybrid ¼ λŷexpert þ ð1� λÞŷAI. The BI-RADS scores of radiologists were used as
their predictions. Both ŷAI and ŷexpert were standardized to have zero mean and
unit variance. In this study, we set λ= 0.5. We note that λ= 0.5 is not the optimal
value. On the other hand, the performance obtained by retroactively fine-tuning λ
on the reader study is not transferable to realistic clinical settings. Therefore, we
chose λ= 0.5 as the most natural way of aggregating two predictions without prior
knowledge of their quality.

Statistical analysis. In this study, we evaluated the performance of the AI system,
radiologists, and the hybrid models using the following evaluation metrics: area under
receiver operating characteristic curves (AUROC), area under precision-recall curve
(AUPRC), sensitivity, specificity, biopsy rate, negative predictive value (NPV), and
positive predictive value (PPV). AUROC and AUPRC were used to assess the diag-
nostic accuracy of the probabilistic predictions generated by the AI system/hybrid
models and the BI-RADS scores of the readers. The BI-RADS scores were treated as a
6-point index of suspicion for malignancy: scores of 1 and 2 were collapsed into the
lowest category of suspicion; scores 3, 4A, 4B, 4C and 5 were treated independently as
increasing levels of suspicion. AUROC avoids the subjectivity in selecting the
thresholds to dichotomize continuous predictions, since it compares performance
across all possible recall rates. However, AUROC weights omission and commission
errors equally and therefore could provide excessively optimistic estimates in extre-
mely imbalanced classification tasks such as cancer diagnosis where the negative cases
often overwhelm the positive cases65. Therefore, to complement AUROC, we also
reported AUPRC which solely evaluates the ability to correctly identify the positive
cases. We calculated both AUROC and AUPRC using the Python Scikit-learn API66.

In addition, we also evaluated the binary predictions of the AI system, the
hybrid models, and the readers using sensitivity, specificity, biopsy rate, NPV, and
PPV. These metrics are commonly used to assess the diagnostic accuracy in clinical
studies7,11,15. The PPV reported in this study corresponds to PPV2, which is
defined as the number of breasts with cancer that were recommended to undergo
biopsy divided by the total number of breast biopsies recommended12. For each
breast, the AI system and the hybrid models produced a probabilistic score that
represents the likelihood of cancer being present. We dichotomized these scores to
produce binary predictions by selecting a score threshold that separates positive
and negative decisions. To compute sensitivity, we dichotomized the AI system’s
probabilistic predictions to match average reader’s specificity. To calculate the
specificity, biopsy rate, PPV and NPV, we dichotomized the AI system’s
probabilistic predictions by matching the average reader’s sensitivity. We similarly
dichotomized the predictions of each hybrid model using the sensitivity/specificity
of its respective reader. For all evaluation metrics, we estimated the confidence
intervals at 95% by 1000 iterations of the bootstrap method67.

In the reader study, we compared the AUROC, AUPRC, sensitivity, specificity,
PPV, and biopsy rate of the AI system and hybrid models with those of the average
radiologists. The confidence interval for these differences was obtained through
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1000 iterations of bootstrap method67. The p-values were computed using one-
tailed permutation test68. In each of 10,000 trials, we randomly swapped the AI/
hybrid model’s score with one of the comparator reader’s score for each case,
yielding a reader-AI difference sampled from the null distribution. A one-sided
p-value was computed by comparing the observed statistic to the empirical
quantiles of the null distribution. We used a statistical significance threshold
of 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the results demonstrated by this study are available within the main text
and the Supplementary Information. The external test dataset used in this study is
publicly available at https://scholar.cu.edu.eg/?q=afahmy/pages/dataset. The NYU Breast
Ultrasound Dataset was obtained under the NYU Langone Health IRB protocol ID#i18-
00712_CR3 from the NYU Langone Health private database for the current study and
therefore cannot be made publicly available. We published the following report
explaining how the dataset was created for reproducibility: https://cs.nyu.edu/~kgeras/
reports/ultrasound_datav1.0.pdf. Although, we cannot make the dataset public, we will
evaluate models from other research institutions on the test part of the data set upon
request. For any further queries regarding data availability, please contact the
corresponding author (k.j.geras@nyu.edu). Requests will be answered within one week.

Code availability
The neural networks used in our AI system were developed in PyTorch. Code for
preprocessing the data and running the inference, including the weights of the neural
networks, sufficient to evaluate our system on other datasets, is available for research
purposes upon a request made to the corresponding author (k.j.geras@nyu.edu).
Requests will be answered within one week. At this point, we are not sharing the code
publicly in order not to compromise potential commercialization of our system.
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